Asymptotic Smoothing and the Global Attractor of a Weakly Damped Kdv Equation on the Real Line

نویسندگان

  • OLIVIER GOUBET
  • RICARDO M. S. ROSA
  • C. E. Kenig
  • G. Ponce
چکیده

The existence of the global attractor of a weakly damped, forced Korteweg-de Vries equation in the phase space L(R) is proved. An optimal asymptotic smoothing effect of the equation is also shown, namely, that for forces in L(R), the global attractor in the phase space L(R) is actually a compact set in H(R). The energy equation method is used in conjunction with a suitable splitting of the solutions; the dispersive regularization properties of the equation in the context of Bourgain spaces are extensively exploited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in L(T)

We prove that the weakly damped cubic Schrödinger flow in L(T) provides a dynamical system that possesses a global attractor. The proof relies on a sharp study of the behavior of the associated flow-map with respect to the weak L(T)-convergence inspired by [18]. Combining the compactness in L(T) of the attractor with the approach developed in [10], we show that the attractor is actually a compa...

متن کامل

Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in L2()

We prove that the weakly damped cubic Schrödinger flow in L(T) provides a dynamical system that possesses a global attractor. The proof relies on a sharp study of the behavior of the associated flow-map with respect to the weak L(T)-convergence inspired by [18]. Combining the compactness in L(T) of the attractor with the approach developed in [10], we show that the attractor is actually a compa...

متن کامل

Long Time Dynamics for Forced and Weakly Damped Kdv on the Torus

The forced and weakly damped Korteweg-de Vries (KdV) equation with periodic boundary conditions is considered. Starting from L and mean-zero initial data we prove that the solution decomposes into two parts; a linear one which decays to zero as time goes to infinity and a nonlinear one which always belongs to a smoother space. As a corollary we prove that all solutions are attracted by a ball i...

متن کامل

Attractors for Non-compact Autonomous and Non-autonomous Systems via Energy Equations

The energy equation approach used to prove the existence of the global attractor by establishing the so-called asymptotic compactness property of the semigroup is considered, and a general formulation that can handle a number of weakly damped hyperbolic equations and parabolic equations on either bounded or unbounded spatial domains is presented. A suitable extension of this approach to the exi...

متن کامل

Global Attractor of the Weakly Damped Wave Equation with Nonlinear Boundary Conditions

In this paper, the main purpose is to study existence of the global attractors for the weakly damped wave equation with nonlinear boundary conditions. To this end, we first show that the existence of a bounded absorbing set by the perturbed energy method. Secondly, we utilize the decomposition of the solution operator to verify the asymptotic compactness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000